Design and Analysis of GDI Based Full Adder Circuit for Low Power Applications
نویسندگان
چکیده
Full adder circuit is an essential component for designing of various digital systems. It is used for different applications such as Digital signal processor, microcontroller, microprocessor and data processing units. Due to scaling trends and portability of electronic devices there is a high demand and need for low power and high speed digital circuits with small silicon area. So, design and analysis of low power and high performance adders are of great interest and any modification made to the full adder circuit would affect the performance of the entire system. This paper describes the design and analysis of GDI based 1-bit full adder circuit for low power applications. GDI technique is used to reduce power consumption, propagation delay while maintaining low complexity of logic design. Here we have introduced a 11-T GDI based full adder circuit which can be used for low power applications. The proposed circuit is better than the existing technique in terms of average power and speed with minimum area penalty. Simulations are based on BPTM model and have been carried out by Tanner EDA tool on 180nm, 90nm, 65nm and 45nm technology.
منابع مشابه
Low-Power Adder Design for Nano-Scale CMOS
A fast low-power 1-bit full adder circuit suitable for nano-scale CMOS implementation is presented. Out of the three modules in a common full-adder circuit, we have replaced one with a new design, and optimized another one, all with the goal to reduce the static power consumption. The design has been simulated and evaluated using the 65 nm PTM models.
متن کاملA Low Power Full Adder Cell based on Carbon Nanotube FET for Arithmetic Units
In this paper, a full adder cell based on majority function using Carbon-Nanotube Field-Effect Transistor (CNFET) technology is presented. CNFETs possess considerable features that lead to their wide usage in digital circuits design. For the design of the cell input capacitors and inverters are used. These kinds of design method cause a high degree of regularity and simplicity. The proposed des...
متن کاملEfficient Design of Low Power ALU using PTL-GDI Logic Full Adder
In this paper, we proposed a low power 1-bit full adder (FA) with 10-transistors and this is used in the design ALU. 16-bit ALUs are designed and compared with the existing design. The proposed design consists of PTL-GDI adder and mux circuits. By using low power 1-bit full adder in the implementation of ALU, the power and area are greatly reduced to more than 50% compared to conventional desig...
متن کاملDesign & study of a low power high speed full adder using GDI multiplexer
The binary adder is the critical element in most digital circuit designs including digital signal processors (DSP) and microprocessor data path units. As such, extensive research continues to be focused on improving the power delay performance of the adder. This paper proposes a new method for implementing a low power full adder by means of a set of Gate Diffusion Input (GDI) cell based multipl...
متن کاملDesign of Low Power and Area Efficient Full Adder using Modified Gate Diffusion Input
The low power techniques are becoming more important due to rapid development of portable digital applications; demand for high-speed and low power consumption.GDI (Gate Diffusion Input) is one of the low power and area efficient technique. GDI requires less number of transistors compared to CMOS technology. The basic cell of GDI consists of two transistors where three terminals i.e Gate, Sourc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014